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L 23 BOHM-BAWERK’s HORSE MARKET

In this celebrated model, the traded goods are identical (indivisible)
horses and (i) each participant wants to consume at most one horse, (jj)
each participant owns either one horse or no horse, Thus, the partici-
pants are partitioned into (potential) sellers who own a horse (hence are

number, representin
buyer), or equivalen
is seller),

? Consider a feasible allocation (gi2), i € N) that is Pareto inferior to another
feasible allocation (g, i e N); ulg) + 1, S ulqg) + 4 for all i with at least ope
strict inequality. Summing up and taking L 1, = £ # into account (a consequence of
feasibility), we get Evulg) <L, u(q;). Conversely, if Z = €gut,ieN)isa feasible
allocation and L, ufg) < L, ulq)) for some feasible allocation (g, i eN) of the
tonmonetary goods, then Z is Pareto inferior to Z*, given by ff = ¢, + (ulq;) - alg) +
8/n, where & = Lyludq) - u(q,)).
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A useful computational device is to order the buyers by decreasing
utilities (for a horse) and the sellers by increasing utilities:

Up Z Uy = " 2 U, LS U8 v =, (1)

where u; = u(h) is buyer j’s utility for a horse, and similarly, v; = u,(h)
for seller i. We also denote by b; the buyer with valuation u; and by s,
the seller with valuation v;. Consider the following example:

Sbuyers: 10=8=7=>=4 =3, G6sellers: 1<3<3<5<6<8.
(2)

Compute first the efficient allocations, namely, the optimal assignment
of the 6 horses among the 11 agents. An assignment is described by the
set of active buyers (who end up with a horse) and a set (of the same
cardinality) of active sellers (who end up with no horse). Of course, an
inactive buyer ends up with no horse and an inactive seller stays with
her horse. In an efficient assignment, if buyer b;, is active while buyer
b;, is not, we must have U >u; (otherwise a transfer of one horse
from j, to j, enhances the joint utility); thus the ¢g* active buyers in an
efficient assignment must have the g* highest utilitiecs among buyers,
and similarly, the g* active sellers must have the g* lowest utilities
among sellers. To determine the efficient number ¢* in our example,
we compute the best feasible surplus, namely, the largest difference in
joint utility between a feasible allocation and the initial allocation (this
is enough in view of the general characterization of efficiency under
transferable utility):

best surplus with one active buyer: 10-1=09,
with two active buyers: 9+ (8 -3) =14,
with three active buyers: 14 + (7 — 3) =18,

with four active buyers: 1}(4— 4-5 = }5}, 7
with five active buyers: 17+ (3 —6) = 14.

Clearly, ¢* = 3 and the general formula for ¢* is as follows (given the
inequalities (1)). The optimal number of “trades” is the largest number
q* such that v,. <ug.and u,.., <., if such a number exists (with
the convention u,,, ; = vy, = —xand v,, ., = u, = +; for instance, if
u; < vy, then g* = 0). If such a number does not exist, there exists at
least one index such that Uy = Ug; in this case, the optimal number of
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trades can be anywhere between the largest g such that Uy <u, and
the largest ¢ such that U, = u, (whether or not a seller and a buyer
with the same utility for a horse do trade is a matter of social
indifference).

Among Pareto optimal allocations, we may restrict our attention to
those where trade is voluntary (this is a simple consequence of private
ownership: no one can be forced to trade), namely, an active buyer pays
no more than his utility and an active seller receives at least her utility,
This may entail a nonuniform transaction price: in our example, the
buyers may pay respectively 6, 2, and 5 and the sellers may be paid
respectively 4, 5, and 4. The competitive equilibrium price rules out
nonuniform transactions by definition,

Define a price p to be competitive if at that price, total demand
equals total supply. In our example, any price p between 4 and 5is
competitive because (the first) three buyers and (the first) three sellers
want to trade. At price p = 4, exactly three sellers want to buy, the first
three buyers definitely want to trade, while b, is indifferent between
buying or not; we still call p = 4 a competitive price because one of the
possible demands equals the unique supply,

The general formula is as follows (see Exercise 2.2). Let g* be the
largest index such that Uge < u,. (remember our convention Uiyt = U
= ~®and v,,, =uy, = +). Then the competitive prices cover the
interval [sup(u,.,,, vge), infu,., Uge o )1

Thus the competitive price is unique when there is an index g such
that Uy = u, or when Uge = Uge,y OF when Uge = Uge s 1- A justly famous
example is the gloves market!®: we have m identical buyers with
common utility « and » identical sellers with common utility v, and
u > v (interpretation: each buyer wants a left-hand glove to match the
right-hand glove he owns; each seller owns a left-hand glove and does
not wear gloves). When there are fewer buyers than sellers (m < n),
then ¢* = m and Ug*+1 = Uge =1, s0 the competitive price is v and
buyers reap all the net surplus; symmetrically, with a shortage of sellers
with respect to buyers (n < m), the competitive price is u (g* = n,
Ugr =, 1), and the buyers get no surplus whatsoever. We come back
to the gloves market in Section 7.7 (see Example 7.12) to compare this
competitive allocation with the Jess extreme allocation resulting from
the Shapiey formula.

To each competitive price corresponds a set of competitive allocations,
characterized by two properties:

(a) Each transfer of money ¢ is the price of whatever horse agent {

" See Shapley and Shubik [1969a].
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owns initially minus the price of the horse she consumes in the alloca-
tion in question (so in a Bohm-Bawerk market, ¢, = 0 for an inactive
agent, ¢; = p for an active seller, and ¢; = ~p for an active buyer).

(b) An agent’s own allocation maximizes her preferences over the set
of all consumption vectors she can afford by selling her initial endow-
ment at the competitive price (in this example, this means u ; < p foran
inactive buyer, u; > p for an active buyer, v; < p for an active seller,
and v; = p for an inactive seller). Finally, we shall call competitive set
the set of all competitive allocations for all possible competitive prices.

Turning to core stability, we find that all transactions must take place
at the same price, implying that the core allocations coincide with the
competitive allocations. We check this general fact in the numerical
example (2). A core allocation must be Pareto optimal; hence, we know
that the first three buyers (and only them) and the first three sellers
(and only them) are active. Let p; be the price paid by b; and r; that
received by 5; (1 <, j < 3). Suppose p; > r; for some b; and some s,.
Then the pair {b;, 5;} has an objection: they are both made better off by
trading at price (p; + ;)/2 (b; pays less and s; earns more). Thus
p;srforalli, j, 1 <i,j < 3. However, feasibility implies Lipi=Lr;
hence, all six numbers p;, r; are equal to a common value p. It remains
to check that p is between 4 and 5. If p > 5, then s, can form an
objection with anyone of the active buyers (say ,). Remember that s,
is inactive by Pareto optimality. By trading with b, at price (p + 5)/2,
s, does make a positive profit and gives a better deal to b,.Thus p>35
is impossible, and p < 4 is similarly ruled out. We have shown a
particular case of a general fact:

In a B6hm—Bawerk’s market, the competitive set and the core

are nonempty and coincide. 3)

. 2 3Z HouUsE BARTER

i This model was originally introduced by Shapley and Scarf [1974). We

i have n agents, and n houses (all different). An agent can consume only
one house (she can live in one place at a time) and cannot be homele;ss.

' Each agent ranks the houses from his first choice to his last choice,
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without ever being indifferent between two houses.’ Initially, each
agent owns a house (so there is a one-to-one assignment of houses to
agents). Agents can exchange houses (within a given coalition, all
rearrangements of their initial houses are feasible), but there is no
medium of exchange such as money. : TR _

Remarkably, the house barter model always yields a unique core bt E 2! : - .

ca

allocation (a rare occurrence when the domain of individual preferences
is so large!).

Here is an example with four agents. Initially, agent i/ owns house 4. v
The four individual preferences are as follows: iUk | ¢

By | uy | U3 | u, .'il
top | hy|hy | hy|h,
hy | by [ hy | By | ¢} it
hy | by | Ay | by ) ?
bottom | &, | hy | A, | B, i

Agents 1 and 3 can swap houses and end up with their top choice. _ i
Therefore (a) the initial allocation is not Pareto optimal, and (b) any | f
allocation in the core must give h, to agent 1 and A, to agent 3. For ; \
instance, the Pareto optimal allocation

hytol, h,t02, h, to 3, hytod

is “blocked” by an objection of coalition {1, 3} that is able to guarantee,
of its own resources, a better house to agent 1 and the same house to et . .
agent 3 (remember that an objection need not improve the welfare of s : ’
every coalition member, but only of some members without deteriorat- '
ing that of any member).

Now there are only two allocations where 1 and 3 swap houses,
namely, the one where 2 and 4 keep their initial house, and the one
where they swap. As the swap is Pareto improving, we are left with a .
unique candidate for a core allocation, namely, ‘ ‘ g

h3 tol, h,to 2, h, 103, hyto 4

It is easy to check that this allocation is not threatened by any other ‘ : B
coalition.

* This assumption of strict preferences is important. When we allow indifferences in an

agent’s preferences, only some of the results stated in this section survive; see Exercise Nyl )
34, i JEEE
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Lemma 3.1. The Top Trading Cycle Algorithm. The following algo-
rithm defines the unique core outcome of the house trading model among
the agents of N = {1,2,...,n}.

For each agent i € N, let a(i) € N be the owner of agent i’s top house.
Find a cycle of the mapping o that is, a sequence iyy...,ix such that
o) =i, k=1,...,K—1 and oliy) =i, and exchange houses
along a cycle (so agent i, gets the house owned by agent {41, With the
convention iy, , = i;). Note that the cycle may be of length 1 (when an
agent’s top choice is the house she initially owns), in which case this agent
will simply not trade. For any mapping o, there exists at least one such
cycle, called a “top trading cycle.”

Call Ny the union of all top trading cycles of o and let all agents of N,
get their top choice. Repeat the operation within N\ N, (o (i) is the owner
of agent i’s top house within those owned by the agents in N\ N,, and
exchange houses along all top trading cycles of o). Call N, the union of all
top trading cycles of o, and repeat the operation within N\ (N, UN,),
and so on.

Proof. Consider a top trading cycle of o. The agents in this cycle
can all achieve their top choice without the help of anyone outside the
cycle; thus, a core outcome must serve N, precisely as in the algorithm.
Given that N, is served in this way, a coalition in N\ N; cannot be
better than when everyone gets her first choice in N\ N;; on the other
hand, a cycle of o, in N\ N, can, as a coalition, guarantee his top
choice in N\ N, to each of its members. Hence, in a core outcome, the
agents of N, are served as in the algorithm (they get their top choice in
N\ M), and so on. Thus the algorithm defines the only conceivable
core outcome.

It remains to check that this outcome, call it z*, is indeed in the core.
Consider a coalition S and an allocation zg feasible by exchanges.
within S, and guaranteeing to all in S as least the same level of welfare
as that awarded by z*. If the intersection of S with N, is not empty, it
must consist of the union of some cycles of o (otherwise the top choice
of someone in S N N, belongs to an agent outside §); and z; coincides
with z* on S N N,. Repeating this argument we find that S AN,
consists of the (possibly empty) union of cycles of o, and z5 coincides
with z* on § N N,, and so on. Q.ED.

Notice that a looser algorithm following an arbitrary sequence of
Pareto improving trading cycles (that may allocate second choice or
worse to some agents) would not always reach the core. This can be
seen in the simple example (1). Say that agents 1 and 2 exchange houses
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first (a Pareto improving move). The resulting allocation is
h =2, hy—1, hy—3, h, -4,

from which any sequence of Pareto improving trades (e.g., 2 and 4 trade
houses, then 3 and 4 trade) results in the allocation

hy—3,  hy>1, hy—>4, h 22,

not the core allocation! Thus agent 1 made a mistake (from which agent
4 benefited) by accepting to trade for a less than top house with agent 2.

Remark 3.1

An additional feature of the core allocation achieved by the top trading
cycle algorithm is this: any other allocation is blocked by an objection of
a coalition using the very allocation that this coalition gets in the core.
See Exercise 3.1.

The top trading cycle algorithm may take up to n rounds (where the
first round consists of finding N, and exchanging houses along the
cycles of N,, the second round does the same for N,, and so on). Yet
the number of rounds does not reflect the intensity of trading in the
core. Quite the contrary, we may have a single round where everyone
trades (when o has a single cycle comprising all agents in N), whereas
we have n rounds only if the initial allocation is Pareto optimal and no
trade takes place.! The successive rounds correspond, in fact, to the
relative value of houses in the competitive equilibrium.

Lemma 3.2. Let T be the number of rounds in the algorithm of Lemma
3.1, so that N, U N, U -+~ U Ny is a partition of N. Then a competitive
equilibrium price obtains as follows. Pick a decreasing sequence g, > g, >
-+ > g and let the price of all houses in N, be q,, forall t =1,...,T.
Moreover, the core outcome is also the unique competitive equilibrium
outcome.

Proof. There is certain oddity in talking about competitive price ina
context where there is actually no medium of exchange. Yet we may
create a fictitious unit of account (fiat money), call prices in this unit,
and derive a (very real) budget constraint for each market participant.
Consider the core allocation z* and a price vector as described in the

4 See Exercise 3.2.
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Lemma. An agent N, owns a house that is worth g,, and thus she can
afford any house in N, N, ,..., Ny. Allocation z* gives her top
choice in N, U N,,, U **- U Ny, as required by the competitive equilib-
rium (maximization of her utility within the limits of her budget con-
straint).

Check now that a competitive equilibrium allocation must be pre-
cisely the core allocation z*. Let p be a competitive price and z a
corresponding competitive allocation. In z, houses are exchanged along
certain trading cycles M, M,,..., Ms: the agents in M, exchange
houses in circular fashion (i, gets the house owned byi, .)- Ultimately,
no money changes hands; hence, the price of all houses within a given
cycle must be the same: all houses traded in M, have the same price g,.
Without loss of generality, assume ¢, 2 ¢, 2 *°° 2
gs. Then the agents in M, get their top choice (so M, is a top trading
cycle), those in M, get their top choice among the houses owned by the
agents in N\ M, (clearly, if g, = q,, M, is a top trading cycle in N as
well; and even if ¢, > q,, M, may be a top trading cycle in N), those in
M, get their top choice among houses owned in N\ (M, U M,) and so
on. The conscientious reader will check that this algorithm picks pre-
cisely the core outcome z*, because N, is, for instance, the union
M, UM, UM, N, is the union M, U M;, and so on. The minor
variations in the competitive price do not change the final allocation.

Q.E.D.

The miraculous coincidence of the core and/or competitive equilib-
rium set into a single outcome is not the end of the story. Look at the
direct mechanism that mechanically computes the outcome z* from the
reports of individual preferences. This mechanism is strategy-proof in
the strong sense that even a joint misreport by a coalition cannot be
profitable. ‘

Lemma 3.3. The direct revelation mechanism implementing the unique
core allocation is nonmanipulable: no coalition can gain (that is, make at
least one coalition member better off and none worse off) by jointly
misreporting preferences.

Proof. For the true preference profile, denote, as in Lemma 3.2, by
N,,..., Ny the partition of N resulting from the top trading cycle
algorithm. Let S be a manipulating coalition and let t*, 1 <t* <t,be
the smallest index such that S N N,. # @. Clearly, when the agents in
N*, N* = U'.3' N, report truthfully, they get their core house no
matter what the agents outside N* report (this is clear from the
definition of the algorithm). Therefore, when S misreport, but N\ S is
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truthful, the best house that an agent in S can hope for is her top
choice among those houses not owned initially by an agent in N*; but
this is precisely what all agents in S N N,. get by reporting truthfully!
Thus, if the misreport by § is profitable to S, the agents in S N N,.
actually get no more and no less than their core house. We can now
repeat the argument to show that the agents in § N N..,, get their core
house as well, and so on. In the end, the manipulation does not strictly
improve the welfare of anyone in S. Q.ED.

Remark 3.2

Another source of potential manipulation by coalitions consists of
exchanging houses prior to the implementation of the core mechanism.
Here is an example with three agents and three houses. Initially, agent i
owns house 4;, and their preferences are as follows:

Uy | Uz | 43
hy | By | 1y

With truthful report of preferences and of initial property rights, the
first top trading cycle involves 1 and 3 and the resulting core allocation
is

hy—»3, hy—=2,  hy-l

However, if agents 1 and 2 trade houses (not always a Pareto improving
move) before showing up to play the core mechanism, the resulting
allocation is

h,—2,  h,>3, hy—o1l

hence, agent 2 strictly benefits and agent 1 does not lose. As it turns
out, such a manipulation can never be strictly profitable for all members
of the coalition (trading houses prior to the mechanism). See Exercise
3.3. Notice also that the coalition (12) could achieve the same outcome
by (i) misreporting their preferences, and (ii) exchanging houses ex post.
(Exercise: prove this claim.)

To conclude this section, we discuss the robustness of the house
barter model in two directions. First, allow the individual preferences to
exhibit indifferences. Then a fair amount of the above results are
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preserved, in particular: P

(a) There is at least one competitive allocation and the competitive set is
obtained by running the top trading cycle algorithms (exploring all the
options created by indifferences).

(b) The core is a subset, possibly strict and possibly empty, of the set of
competitive allocations. All core allocations yield the same utility
distributions.

Property (a) is straightforward (its proof follows the argument in the
proof of Lemma 3.2). Property (b) (due to Wako {1991}; its proof is the
subject of Exercise 3.5) is more surprising: we normally expect the core
to be a superset of the competitive set! Here is a three-agent example
showing that the core may be empty:

u; uz U
hy, | hyhy| by
hi,hy | hy | By )

hy

Initially, agent i owns A;. Using top trading cycles, we find two competi-
tive allocations, namely,

z: h, -2, h,—»1, hy—3,
and
z': hy—1, hy, >3, hy = 2.

Now z is blocked by an objection of {2,3} and 2’ is blocked by an
objection of {1,2). Examples where the core contains a unique alloca-
tion and the competitive set contains at least one more allocation are
given in Exercise 3.4.

The second way to generalize the house barter model is more radical.
Suppose that we allow the agents to trade two kinds of goods, say,
houses and cars. Assume that each agent initially owns one car and one
house and consumes exactly one car and one house. Suppose, moreover,
that individual preferences are separable between houses and cars
(which car I own does not affect my ranking of the various houses and
vice versa). Then it is not clear whether the core of the economy will be
empty or not (no systematic result is available yet). Of course, if we
allow nonseparable preferences, the core may be empty. (Exercise: give
an example.)
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9 }/f THE MARRIAGE MARKET

This important model® is another instance where the core concept is
more successful than the competitive equilibrium. Recall from Section
2.6 that the competitive concept collapses when a good is produced
under increasing returns to scale; in that case, the core is a reasonable
substitute, which, however, may cut a large subset of the Pareto optimal
frontier (and may easily be empty, too; see Section 2.8). By contrast, in
the marriage market, the core is always nonempty and often small;
moreover, its end points (in a sense to be made precise soon) are easy
to compute.

We have a set M of men and a set W of women. Each man (and each
woman) has strict preferences over his (her) potential spouses. Mar-
riages are exclusively monogamous and heterosexual.® We assume for
simplicity that there is the same number of men and of women. This is
of no consequence from a technical standpoint: all key results are
maintained when M and W are of different size, and we view “remain-
ing single” as an option that each agent ranks among the set of his
potential mates (so that some mates are less desirable than the celibacy).”

A matching is a one-to-one pairing of each man to a woman. The

' core stability property follows naturally from the fact that each individ-
ual owns himself or herself. Say that a certain matching is proposed; if a
certain pair of one man and one woman prefers one another over their
proposed mate, then the matching in question is not in the core. Call a
matching stable if no pair of one man and one woman can object as
above; this is enough for core stability because of the assumption of
strict preferences. In particular, pairwise stability implies Pareto opti-
mality.?

We can interpret the marriage market as an exchange economy in
which (a) each man and each woman owns a personalized indivisible
good, (b) each man (resp. woman) wants to consume at most one of the
goods initially held by women (resp. by men) and derives no utility from

5 For a survey of its practical applications to several job-matching problems, see Roth
and Sotomayor [1990]. | ;

¢ Other examples are a set of firms and a set of computer specialists (when each firm ‘ P
needs exactly one computer specialist), or a set of pianists and a set of violinists when i)
there is a market for piano-violin duos (but not for trios). i

7 See Exercise 3.10 for more discussion. Of course, in realistic models of marriage, the ) ‘
celibacy is always an important option; e.g., there is a market for solo pianists or solo 1 l
violinists. i :

% If the matching o is Pagato inferior to the matching o', there is a man m preferring | !
w' = ¢'(m) over w = o(m). Then w' prefers m = o'(w’) over m’ = o(w’) (remember
that w' is never indifferent between any two men); hence the pair (m,w’) blocks the |
matching o.
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the goods held by men (resp. women). There is no medium of exchange
such as money.’

To discover a core stable matching, a simple heuristic can be helpful.
Start with an arbitrary matching. If we find a blocking pair, match them
and match their former mates together. Continue until, hopefully, we
reach a stable outcome. Here is an example with four men, four women,
and the following preferences:

my | my | my | m, Wi | Wy [ wy | wy
W | wy [ wy | wy my > |m | m
* lwy[w | w | myfo* fmy| o= | (2
* * * * |me | o* * *
* * * * ’,' ms, * * *

ceeg

Start from the matching (m;,w,), i = 1,2, 3,4. Here (my, w,) object; so
we marry them and (forcibly) marry w, to m,. Now (m,,w,) have an
objection; we marry them, as well as m; to w,. Hence

(mp W4) (mzng) (mpwz) (m4,w,).

Check that this is a stable matching: for instance, although w, may
prefer any other man to m,, she cannot convince any of these to switch.
In fact, this matching is the only matching in the core (out of 24
possible matchings; one can check directly that there is no other core
matching, but it is much easier to apply Theorem 3.1 by checking that
the M-optimal and the W-optimal matchings coincide).

Observe that this core matching can be interpreted as a competitive
equilibrium. Set the same price for a man and a woman if they are
married and choose these prices as follows:

Pmy = Pw, < Pm, = Pu, < D, =Pw, < Pm, = Pu,

Then check that the price of any woman (resp. man) preferred by man
m (resp. woman w) to his (her) core mate is higher than his (her) own
price, so that no one can afford to buy a preferred mate (and everyone
can afford to buy his/her eurrent mate).

However, this interpretation of the core matching as a competitive
allocation is often impossible, A simple example with three men and

® When we add money to the picture, the bilateral assignment model of Section 3.4
obtains.
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three women is as follows:

my [ my | my Wy | W2 | wy

wy | wy | w, my \my \my | (3)
14 .

* wz W3 ml * *

* MI3 Mll m2 * *

Here the unique stable matching is
(my,w))  (my,w,) (my,w,).

(Indeed, any matching containing (m,,w,) is blocked by (m;,w,) and
any matching containing (m,,w,) is blocked by (m;, w,); thus, we must
have (m),w,) in the core. In the market reduced to my, my, wy, w,, the
matching (my,w,) (m,, w,) gives everyone his/her top choice.) Yet if
there exists a competitive price system, it must satisfy

Pm,=p,, fori=1273

(so that married agents can afford each other),
Pw, <Pm, 0w, cannot afford m,,

Pm, <P,, SO mj cannot afford w,,
Pm, <P., SO m, cannot afford w,.

These equalities and inequalities are inconsistent.

Our last example, before stating some general results about the
marriage market, is meant to illustrate (i) that the core may contain
several different matchings, and (ii) that the naive algorithm used above
may not converge to a stable matching:

my [ my | m, wi [ wy | w,
Wy | Wy | wy my | m; | m
, . 4)
Wy | W3 | wy m3 | my [ m,
W3 | Wy | wy m,; | my [ m,

Start with the initial matching
(my,w))  (my,w,) (my,w;).

There are fobjecting pairs, namely, (m,,w,) and (m3, w,). If we choose
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to satisfy (m,, w,), we reach
(ml,wz) (m?.'wl) (mjaws)s

where, again, two objecting pairs emerge: (m,,w,) and (m3,w,). Say
that we choose (m, w,) so as to reach

(my,w3)  (my,w))  (my,wy).

Here, again, we have a choice of objecting pairs; say that we choose
(m,,w,) (the other objecting pair is (m,,w,). We are now matching

(ml,w3) (mzywz) (m39w|)1

from which the objection by (m,,w,) brings us back (after four steps) to
the original matching! On the other hand, by making different choices
of objecting pairs, we reach quickly the two stable matchings of this
market, namely,

(m,,wy) (my,w;) (my,w,) (viathe (m,,w,) objection,
then the (w,, m,) objection),

(my,w,) (my,w;) (my,w,) (viathe (m,,w,) objection). (6)

Notice that&very i amd-every Womap has a different mate in these
two matchings, and that all men prefer (5) to (6), whereas all women
prefer (6) to (5). This feature is quite general.

Theorem 3.1. (Gale and Shapley [1962]). In any marriage market with
strict preferences:

(@) There is at least one stable matching; the core is never empty.

(b) There is a stable matching, called the M-optimal matching, where
every man gets the best of all his core mates (there is no stable matching
where he is matched to a preferred woman) and every woman gets her worst
core mate. There is a stable matching, called the W-optimal matching,
where every woman gets the best of all her core mates and every man gets
his worst core mate. The core contains a single matching if and only if the
M-optimal matching and the W-optimal matching coincide.

(c) The M-optimal matching is computed by means of the Gale-Shapley
algorithm where men propose (defined below).

(d) A statement symmetrical to (c) holds for the W-optimal matching.
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Definition 3.1. The Gale—Shapley Algorithm where Men Propose

STEP 1

Each man proposes to his first-choice woman. If a woman receives
exactly one proposal, this man is called her engagee. If a woman
feceives more than one proposal, she keeps the proposer she likes best
as her engagee and rejects the others. Men are now partitioned into
engaged or rejected. The algorithm stops if all men are engaged
otherwise, we go to the next step.

STEP 2

All rejected men propose now to their second-best choice. Each
woman receiving new proposals keeps as her engagee the man she likes
best among current proposer(s) and possibly former engagee, and
rejects the others. (Thus a man previously engaged may now be re-
jected.) The algorithm stops if all men are engaged; otherwise, we go to
the next step.

STEP 3

All rejected men propose now to their next choice, and women
update their engagements according to new proposals (if any).

This continues until all men are finally engaged, at which point the
engagement pattern turns into the final matching. Since each man
proposes to any woman only once, the algorithm must stop after finitely
many steps. The proof of Theorem 3.1 is in Appendix 3.1.

An example is the three-men, three-women market 4). If men
propose, w, teceives an offer from m, while w, receives two offers and
keeps m,. Next round, m, offers to w;, and the algorithm stops on
matching (5). If women propose, m, receives two offers, keeps w, and
rejects w,, while m; receives an offer from w,. Next, w, offers to m;,
who still keeps w,. After this second rebuttal, w; finally offers to m,,
and the algorithm stops on matching (6). A more complicated example
of the Gate—Shapley algorithm is given in Exercise 3.6.

Remark 3.3

Many more interesting properties of stable matching are covered in
Roth and Sotomayor [1990]. For instance, the M-optimal matching is
shown to be weakly Pareto optimal from the men’s point of view; see
Exercise 3.7. More importantly, the core possesses a lattice structure by
means of the following “supremum” and “infimum” operations. If p
and ' are two stable matchings, construct the matching u Vv p' as
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follows; match every man m to whomever he prefers from his mate in 2
and his mate in u’. If p and p' are two arbitrary matchings, this
construction may not yield a one-to-one matching from M onto W, but
if p and p' are both stable, it does. Moreover, p V u' is a stable
matching as well, and it matches every woman with whomever she likes
least among her mate in . and her mate in u'; see Exercise 3.8.

The core of a marriage market is easy to estimate, because the
M-optimal and W-optimal matchings are its two bounds (they give utility
bounds for each agent). Moreover, the M-optimal matching can be used
as a direct mechanism to implement a stable matching. Although this
mechanism is not strategy-proof, its strategic properties are still very
strong.

Lemma 3.4. In the direct mechanism where agents report their prefer-
ences after which the M-optimal matching is implemented, truthtelling is a
dominant strategy for the men, although not for the women. Assuming that
men report truthfully, the optimal manipulation of the women yields a
stable matching.

The proof is omitted (see Roth and Sotomayor [1990].

Consider, for example, the M-optimal mechanism in economy (4). If
all report truthfully, the matching (5) results. A (small) manipulation by
w; will be enough to bring about the matching (6), a strict improvement
for both w, and w,. Woman w, reports m, > m, > m,, and the
Gale-Shapley algorithm works as follows:

STEP 1:  w, receives offers from m, and m, and (untruthfully) keeps
my; w, has an offer from m,.

STEP 2: m; offers to w,, who therefore keeps that offer and rejects
my.

STEP 3: m, offers to w;, who keeps that offer and rejects m,.

STEP 4. m, offers to w,, and the matching (6) is reached.

Thus the gap between the M-optimal and the W-optimal matchings
serves as an upper bound on the possible extent of strategic manipula-
tion in these two direct mechanisms (implementing respectively the
M-optimal and the W-optimal matchings).
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